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INTRODUCTION

e Motivation: to improve the strike precision of
conventional spin-stabilized projectiles

o Difficult Point: the inherent ballistic characteristics
of spin-stabilized projectiles
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INTRODUCTION

« How to keep the flight stability for spin-stabilized

projectiles
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INTRODUCTION

A dual-spin-stabilized projectile

Center of Mass of AB e Itcan change the
X trajectory accurately and
Center of Mass continuously
Center of Mass of FB
Aft Body (AB) e v" Roll attitude measurement

v Application of canards

Forward Body (FB)
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v" Flight stability
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PROJECTILE AND CANARD

DYNAMIC MODEL

 Assumptions and Simplification

 The forward and aft bodies of dual-spin stabilized
projectiles are described separately

 the principle axes of inertia of the forward and aft bodies
are parallel to those of the combination

* the coupled effect of aerodynamics acted on projectile
body is not considered, either.
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PROJECTILE AND CANARD

DYNAMIC MODEL

 Projectile Dynamic Model
* Interms of Newton’s second law
o With respect to the no-roll reference frame (NRRF)
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 Projectile Dynamic Model
e With respect to the no-roll reference frame (NRRF)
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DYNAMIC MODEL

 Canard Dynamic Model
« With respect to the no-roll reference frame (NRRF)

[ S =0 The canard deflection angles
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.
B‘I\%I\/IIC MODEL OF ANGLE OF ATTACK

 The generalized angle of attack Is used to
be the independent variable

A

A
< \m e Geometric description
4 v of the generalized
S angle of attack for the
-

e T dual-spin projectile
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IﬂN@I\/IIC MODEL OF ANGLE OF ATTACK

* Using the transverse differential equations
and taking the trajectory arc as argument,
we can obtain the transverse equations of
dual-spin stablilized projectiles with
complex form as follows:
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[”N@I\/IIC MODEL OF ANGLE OF ATTACK
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..
ﬂYNAl\/uC MODEL OF ANGLE OF ATTACK

* the model of nonlinear angular motion for

dual-spin-stabilized projectiles
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ANALYSIS OF RESONANCE

o Simplification using projectile linear theory
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ANALYSIS OF RESONANCE

* A Linearized Model of the Pitching and
Yawing Motion
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ANALYSIS OF RESONANCE

* Analytical Solution of Periodical Action by
Canards
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« Analytical Solution of Periodical Action by
Canards
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NUMERICAL SIMULATION
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NUMERICAL SIMULATION
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CONCLUSIONS

(c) The effect of the ratio of axial moment of inertia of
(d) Similar to conventional spin-stabilized projectiles,

dual-spin-stabilized projectiles also rely on extremely high
spin rates to maintain gyroscopic stability. The resonance
of dual-spin-stabilized projectiles may occur under some
certain conditions, which could be complemented into

present theoretical research for spin-stabilized projectiles.
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PRESENTATION ENDS
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attention !
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